Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices. I. Transformations
نویسندگان
چکیده
منابع مشابه
Transformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices. I. Transformations
Transformations of the form A + E’FAg2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. ‘Zi and @a are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques, in paper II algorithms for Toeplitz and Toeplitz-plus-Hankel systems will be p...
متن کاملTransformation Techniques for Toeplitz and Toeplitz-plus-hankel Matrices Part I. Transformations
Transformations of the form A ! C 1 AC 2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. C 1 and C 2 are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques,in part II algorithmsfor Toeplitz and Toeplitz-plus-Hankel systems will be p...
متن کاملTransformation Techniques for Toeplitz and Toeplitz-plus-hankel Matrices Part Ii. Algorithms
In the rst part 13] of the paper transformationsmappingToeplitz and Toeplitz-plus-Hankel matrices into generalizedCauchy matrices were studied. In this second part fast algorithms for LU-factorization and inversion of generalized Cauchy matrices are discussed. It is shown that the combinationof transformation pivoting techniques leads to algorithms for indeenite Toeplitz and Toeplitz-plus-Hanke...
متن کاملGeneralized inversion of Toeplitz-plus-Hankel matrices
In many applications, e.g. digital signal processing, discrete inverse scattering, linear prediction etc., Toeplitz-plus-Hankel (T + H) matrices need to be inverted. (For further applications see [1] and references therein). Firstly the T +H matrix inversion problem has been solved in [2] where it was reduced to the inversion problem of the block Toeplitz matrix (the so-called mosaic matrix). T...
متن کاملIrreducible Toeplitz and Hankel matrices
An infinite matrix is called irreducible if its directed graph is strongly connected. It is proved that an infinite Toeplitz matrix is irreducible if and only if almost every finite leading submatrix is irreducible. An infinite Hankel matrix may be irreducible even if all its finite leading submatrices are reducible. Irreducibility results are also obtained in the finite cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1997
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(96)00527-7